
Authoring with IDN Structural Patterns
David E. Millard

Electronics and Computer Science, University of Southampton
Southampton, UK
dem@soton.ac.uk

ABSTRACT
IDN Structural Patterns are a type of Design Pattern that offer three
potential benefits to IDNAuthors: they can inform them of common
solutions to problems, they can provide ways to create complex
structure quickly, and they can provide a lens to reflect on existing
work. But how might they be successfully integrated into an au-
thoring tool? In this paper I set out a design space for patterns in
IDN Authoring, looking at cookbooks, patterns by design, domain
specific languages, and structural parsers, and exploring whether
they deliver those benefits, and also whether they support uncom-
mon as well as common patterns. I show that no single approach
delivers all of the benefits, but that combinations of methods could
potentially do so, at the risk of increased cognitive load for authors.
This initial work shows that there is significant potential in using
patterns for authoring, but that more empirical work is needed to
understand their affordances and interaction effects.

CCS CONCEPTS
• Human-centered computing → Hypertext / hypermedia;
Interaction design theory, concepts and paradigms; • Software and
its engineering→ Design patterns.

KEYWORDS
hypertext, digital interactive narrative, design patterns, authoring
ACM Reference Format:
David E. Millard. 2022. Authoring with IDN Structural Patterns. In Pro-
ceedings of June 28, 2022 (NHT’22). ACM, New York, NY, USA, 5 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
In my ‘Strange Patterns’ chapter of ‘The Authoring Problem’ I
set out the work that has been done over the last thirty years on
understanding structural patterns in Hypertext and Interactive
Digital Narratives (IDN) [16]. Following a predominantly structural
approach several authors have explored the different structures
that regularly occur in hypertext literature and I argue that these
become Design Patterns [1] that hypertext and IDN authors can use
as part of their own authoring process.

While it is intuitively true that understanding the community’s
common methods for solving problems would be useful to authors,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
NHT’22, Barcelona, Spain,
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

in this paper I try to go further and set out a design space for
how patterns could be incorporated into authoring tools, based
on specific examples and inspired by similar approaches in the
literature.

I review these approaches against three potential benefits:

• Potential Benefit 1 (PB1) - they can inform authors of
common solutions to problems

• Potential Benefit 2 (PB2) - they can provide a way to create
complex structure quickly

• Potential Benefit 3 (PB3) - they can provide a lens by
which to reflect on an existing structure

IDN structural patterns normally refer to Common Patterns that
occur in many different works. In ‘Strange Patterns’ I argue that this
risks a post-structural critique that no patterns should be considered
as fundamental or universal, and that doing so might actually be
harmful in stifling innovation (especially in narrative games where
the mechanics of interaction might be wildly different from those
systems where the patterns were first observed). An alternative is
to support Uncommon Patterns - which are those that are unique
to a particular work, but which occur multiple times within that
work [20]. So when exploring the design space for patterns in
IDN authoring we will also consider whether the solutions lend
themselves to uncommon patterns as well as common ones.

2 BACKGROUND
‘Strange Patterns’ sets out three types of IDN Pattern:

• Micro Patterns – these are the small building blocks of
IDN, structures that are so core to the authoring experience
that they seem invisible to us, even though they can define a
whole form. Examples including Bush’s trails [6], semantic
web triples [12], adaptive links [8], or storylets [10].

• Meso Patterns – these are larger patterns that describe sub-
structures within an IDNmade up of multiple micro patterns.
These sub-structures are often used to create specific effects
or solve certain problems. Examples include split/joins [4],
phasing [7], or unchoices [14].

• Macro Patterns – these are the largest type of pattern and
describe entire IDNs or large sections of IDNs. Macro pat-
terns capture the overall structure, and thus some part of
the overall experience, especially in regard to the agency of
the reader. Examples include Canyons/Deltas/Plains [18], or
Gauntlets or Spoke and Hub [3].

In this paper I am focusing on Meso Patterns and their potential
role in authoring. Micro patterns are so fundamental in our IDN
systems that they tend to be baked into authoring environments
already (you can do the same with Meso patterns, see Section 3.2
below). Macro patterns define the entire shape of an IDN; they

https://orcid.org/0000-0002-7512-2710
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

NHT’22, Barcelona, Spain,
David E. Millard

could be used in authoring and if so would be variations on the
Meso approaches defined here.

3 AUTHORINGWITH PATTERNS
This section outlines five approaches to incorporating structural
patterns into IDN and hypertext authoring tools, some of which are
poorly explored in both tools and the literature. These are: cook-
books, patterns by design, templates, domain specific languages,
and structural parsers.

3.1 Cookbooks
A ‘cookbook’ is a colloquial term for describing help documenta-
tion that presents a set of recipes for solving particular problems.
Both Twine1 and Inform2 have an online cookbook (Inform calls
this a ‘Recipe Book’) which describes a set of topics, and for each
topic gives a description of the functionality used in the examples,
followed by the examples themselves that demonstrate various
principles and challenges. For example, Figure 1 shows the page
from the Twine cookbook for simulating Dice Rolling using Twee
(the markup language used within the Twine application).

Figure 1: The Twine cookbook page for ‘Dice Rolling’

While cookbooks could easily be used to describe structural
patterns and give examples of how they can be created they in-
stead tend to focus on behaviour, with both the Twine and Inform
cookbooks focusing on how to manipulate story state to achieve
particular effects. Even Tinderbox, which is more focused on knowl-
edge management tasks and has a hypertext heritage (coming from
Eastgate systems, the creators of Storyspace[5]), has a cookbook
that focuses on actions and export, rather than structure3.

Cookbooks are simple to understand and a community can also
be involved in their creation, this makes them good at informing au-
thors of solutions to common problems (PB1). They do not directly
allow structure to be created in a tool (PB2) but examples can be
1Twine cookbook: https://twinery.org/cookbook/
2Inform cookbook: http://inform7.com/book/RB_1_1.html
3Tinderbox cookbook: http://www.eastgate.com/Tinderbox/cookbook/index.html

cut and pasted and modified to fit. While they do not directly allow
for reflection within a tool (PB3), they do provide a visible standard
against which authors can compare their own work. As they only
describe a finite set of common patterns, uncommon patterns are
not supported.

3.2 Patterns by Design
An alternative approach is to embed certain patterns into the de-
sign of the authoring tools themselves. This is frequently done
with micro patterns, where certain kinds of links or structures are
supported in the interface, but can also be done with meso patterns.

The StoryPlaces authoring tool embeds two meso patterns: lock-
ing, where one node has to be read before another; and phasing,
where a set of nodes are locked or unlocked together [17]. These
become primary elements in the interface. For example, as shown in
Figure 2 when editing a node in the ‘narrative constraints’ section
the tool shows a list (initially empty) of nodes that would unlock this
one, and provides a mechanism for looking up and adding nodes to
this list. Similarly, the same page allows the node to be added to a
Chapter (the StoryPlaces name for a phase), and to specify whether
this node locks or unlocks any chapters.

Figure 2: The StoryPlaces authoring tool, showing both lock-
ing and phasing built directly into the interface

Embedding patterns in the interface normalises meso patterns in
the same way as micro patterns (StoryPlaces also embeds storylets)
and thus encourages their use by framing them as part of the nor-
mal functioning of the authoring tool, thus indirectly informing
authors about those patterns (PB1). It also makes the instantiation
of the patterns seamless (PB2). However, in doing so it permanently
pivots the authoring tool towards the use of those specific patterns,
potentially at the expense of other patterns that might also be useful
to users, meaning that their use for reflection is very limited (PB3),
and similarly that uncommon patterns are not supported.

3.3 Templates
Templates are a declarative way of creating reusable material within
an authoring environment. In note-taking tools such as Obsidian4

4Obsidian homepage: https://obsidian.md

Authoring with IDN Structural Patterns
NHT’22, Barcelona, Spain,

they allow content and structure to be defined once, and then in-
stantiated again and again to make the creation of elements with
standard parts easier. They can also include macros that are dynam-
ically filled by the system at the moment of creation. For example,
Figure 3 shows a template for a ‘Zettelkasten’ style note in Obsidian
using macros to insert the title, date, and time.

Figure 3: A template (left) and instantiated page (right) for a
‘Zettelkasten’ note in Obsidian

This style of template only handles local structure – i.e. outbound
links from this node – but we can imagine templates where we
might specify multiple nodes at once and the relationships between
them. Such a structural template could be used for common struc-
tural patterns, for example split/joins, and in theory would both
make the authoring process simpler (PB2) (as complex structures
would be created in a single operation rather than many) as well
as helping to educate new authors by exposing them to common
ways of working (PB1). The existence of templates would also in-
directly help authors reflect on the structure of their work (PB3).
If new templates could be created by authors then it also supports
uncommon patterns.

A simpler form of templates could be supported through struc-
tural cut and paste (where multiple nodes and their relationships
could be selected, copied, and then pasted into the authoring en-
vironment). While this approach does not have the benefits of
informing authors about common patterns (PB1), it does still al-
low for the easy creation of complex structure (PB2) and indirectly
helps authors reflect on their work through their own cut and paste
behaviour. Structural cut and paste is also a very straightforward
and familiar way to support uncommon patterns.

3.4 Domain Specific Languages
Domain Specific Languages (DSLs) are computer languages for
defining behaviour in a specific domain, with a higher level of
abstraction than is found in more general programming languages
and which use the concepts and terminology of that domain[15].
As a DSL is aligned closely with its problem space it becomes easier
for people to connect what they want to do in that domain with
what they need to write. DSLs are therefore a useful bridge between
technical and domain expertise. They can also be independent of
any given target platform or tool.

DSLs are a more complex method for defining patterns, as they
can include parameterised elements. This makes them more power-
ful than simple visual templates (PB2), but also means they might
be less effective at communicating patterns to authors (PB1). Their
complexity means that they are also not very good at helping au-
thors to reflect on their creations (PB3).

Figure 4: An example of a Typescript DSL (taken from [20])
that defines a Flashback

DSLs are a good solution for uncommon patterns. Figure 4 shows
a snippet of the Typescript DSL used in [20] to define a Flashback
uncommon pattern: a set of four nodes, with four lock relationships
between them (where the lock relationship has been previously
defined using the same DSL).

3.5 Structural Parsers
A final potential approach would be to identify patterns in the
author’s structure as it emerges. This is similar to the way that
a spatial parser works in spatial hypertext [19], in that case the
parser is looking for visual and layout similarities (such as items in
a row that become a list, or items with the same colour that become
a set); with structural parsing it would be analysing the graph of
link connections and looking for structures that match well known
patterns. In graph theory this is called the sub-graph isomorphism
problem [21] and there are numerous potential solutions competing
for computational efficiency [2]. Once patterns have been identified
they could be highlighted to the author and labelled or described.

Spatial hypertext was first presented as a tool for information
triage, allowing structure to emerge rather than being imposed
from the start – ideal when that structure is not known in advance
[13]. A structural parser might therefore help the author to under-
stand what sort of story they were creating (in the case of macro
structures) or what kinds of approaches they were using within
the story to manage its progress (the meso structures) even if they
didn’t know this when they began (PB3). They also draw attention
to common patterns and therefore expose those approaches to users
(PB1), but they don’t enable them to create complex structure more
quickly (PB2) (although they might if coupled with structural cut
and paste).

Structural parsers that look for repeating (in addition to well
known) patterns could also support uncommon patterns, as they
could draw attention to structures that reoccur in an authors work.
Searching for common sub-graphs within a larger network is a
different problem known as frequent sub-graph discovery, with a
range of potential solutions that vary in their search strategy, inputs,
and completeness [11].

4 DISCUSSION
Table 1 shows a summary of the five methods (and the cut and paste
template variant) mapped against the three potential benefits, the
final column also shows whether they support uncommon patterns

NHT’22, Barcelona, Spain,
David E. Millard

Table 1: The methods mapped to the potential benefits and their applicability to uncommon patterns

PB1 Inform Users PB2 Complex Structure PB3 - Reflection Uncommon Patterns
Cookbook Yes Indirect Indirect No
By Design Indirect Yes No No
Templates Yes Yes Indirect Possible
Cut and Paste No Yes Indirect Yes
DSL Indirect Yes No Yes
Parser Yes No Yes Yes

as well as common ones (Templates shows ‘possible’ as this is only
supported if new templates can be generated by the author).

4.1 User/Tool Alignment and Cognitive Load
One of the challenges that authors face in the authoring process is
aligning themselves with their tools, with misalignment possible
in four dimensions: conceptual, ontological, expertise, and work-
flow [9]. This misalignment can place significant cognitive load on
authors.

Introducing patterns into authoring impacts all of these dimen-
sions, and could make that cognitive load worse. It requires authors
to conceptualise their work through the patterns, it requires them to
learn the terminology and use (ontology) of the patterns, it requires
additional expertise in the form of the skills needed to manipulate
and use the patterns within the tool, and it requires them to adapt
their workflow to include patterns.

However, the different methods have these requirements to dif-
ferent extents. For example, the Cookbook and Cut and Paste ap-
proaches are familiar from many other applications, and authors
should have transferable skills, and already think and work in this
kind of way. By Design also requires no special expertise to deploy,
but it does require the author to conceptualise their story using the
patterns and adapt their workflow for the tool (e.g. in StoryPlaces
authors must become familiar with the idea of Chapters, concep-
tualise their narrative design in terms of locking and unlocking
chapters, and adjust their workflow so that the creation of chapters
is at its heart).

A DSL is the most sophisticated method, and requires signifi-
cant expertise to deploy effectively, however the conceptualisation,
ontology, and workflow are driven by the author, and so – assum-
ing they have those skills – it might actually introduce the least
complexity, and arguably is the approach that most empowers the
author.

4.2 Combining Approaches
So far we have discussed the methods for including patterns in
authoring independently, but in reality they could be combined and
used together in a single tool.

Templates, Cut and Paste, and the Structural Parser are all declar-
ative in nature and could potentially work together. Templates and a
Structural Parser both inform users about patterns (PB1), Templates
and Cut and Paste enable the easy creation of of complex structure
(PB2), and a Structural Parser supports reflection directly (PB3). In
addition, the Cut and Paste and the Structural Parser enable the
support of uncommon patterns.

A combined approach thus achieves all of the benefits, although
it also aggregates all of the cognitive load from each approach.

By Design and DSLs are alternative methods that are not really
compatible with Templates, Cut and Paste, or a Structural Parser,
but they could be combined with a Cookbook, which could help the
conceptualisation problem for By Design, and provide substantial
support for the complex DSL approach, and mitigate to some degree
the lack of reflection inherit in both methods.

Just because the methods are compatible does not mean that they
are effective, and more direct empirical work is needed to evaluate
the individual methods, and to understand their interaction when
combined in a single tool.

5 CONCLUSION
In this paper we have briefly covered the sorts of structural patterns
typically found in IDN and then set out three potential benefits
(PBs) of using them within authoring: PB1 - that they can inform
authors of common solutions to problems, PB2 - they can provide a
way to create complex structure quickly, and PB3 - they can provide
a lens to reflect on the existing structure in an author’s work.

We then explored six methods for incorporating patterns into
IDN authoring tools. By using them in aCookbookwith explanations
and examples, building them By Design into the authoring interface,
supporting them through Templates, allowing Structural Cut and
Paste, supporting them through a Domain Specific Language (DSL),
or highlighting them to the author with a Structural Parser. By
mapping these methods to the benefits we have shown that none
in isolation provide all of the potential benefits, nor do they all
support uncommon patterns (local patterns that only apply within
a given piece of work), but that they could be combined together in
different ways to do so – but at the risk of increasing the author’s
cognitive load.

Further work is required to implement some of the methods, and
evaluate them in isolation and in combination, in order to under-
stand both their individual affordances, and their interaction effects.
IDN Authoring remains a significant challenge for the research
community, and is a barrier to more sophisticated interactive fic-
tion and narrative games. Patterns have the potential to help break
down this barrier and contribute tomore powerful and usable future
tools.

ACKNOWLEDGMENTS
Thank you to Callam Spawforth and Sofia Kitromili, whose PhD
work contributed significantly to some of these ideas.

Authoring with IDN Structural Patterns
NHT’22, Barcelona, Spain,

REFERENCES
[1] Christopher Alexander. 1978. A Pattern Language: Towns, Buildings, Construction:

2 (illustrated edition ed.). OUP USA, New York.
[2] Zubair Ali Ansari, Jahiruddin, and Muhammad Abulaish. 2021. An Efficient

Subgraph Isomorphism Solver for Large Graphs. IEEE Access 9 (2021), 61697–
61709. https://doi.org/10.1109/ACCESS.2021.3073494

[3] Sam Kabo Ashwell. 2015. Standard Patterns in Choice-Based Games.
https://heterogenoustasks.wordpress.com/2015/01/26/standard-patterns-in-
choice-based-games/

[4] Mark Bernstein. 1998. Patterns of Hypertext. In Proceedings of the Ninth ACMCon-
ference on Hypertext and Hypermedia : Links, Objects, Time and Space—structure
in Hypermedia Systems: Links, Objects, Time and Space—structure in Hypermedia
Systems. ACM, 21–29.

[5] Mark Bernstein. 2016. Storyspace 3. In Proceedings of the 27th ACM Conference
on Hypertext and Social Media (HT ’16). Association for Computing Machinery,
New York, NY, USA, 201–206. https://doi.org/10.1145/2914586.2914624

[6] Vannevar Bush. 1945. As We May Think. The Atlantic (July 1945). Section:
Technology.

[7] Charlie Hargood, Mark Weal, and David E. Millard. 2016. Patterns of Sculptural
Hypertext in Location BasedNarratives. In Proceedings of the 27th ACMConference
on Hypertext and Social Media. ACM.

[8] G Kaplan and G Wolff. 1990. Adaptive Hypertext. In Proceedings of the Intelligent
Systems Technical Symposium. IBM Endicott, NY.

[9] Sofia Kitromili, James Jordan, and David Millard. 2020. What Authors Think
about Hypertext Authoring. In ACM Conference on Hypertext and Social Media
(13/07/20 - 15/07/20). ACM, 9–16. https://doi.org/10.1145/3372923.3404798

[10] Max Kreminski and Noah Wardrip-Fruin. 2018. Sketching a Map of the Storylets
Design Space. In Interactive Storytelling (Lecture Notes in Computer Science),
Rebecca Rouse, Hartmut Koenitz, and Mads Haahr (Eds.). Springer International
Publishing, Cham, 160–164. https://doi.org/10.1007/978-3-030-04028-4_14

[11] Varun Krishna, N. N. R. Ranga Suri, and G. Athithan. 2011. A Comparative Survey
of Algorithms for Frequent Subgraph Discovery. Current Science 100, 2 (2011),

190–198.
[12] Ora Lassila, Ralph R. Swick, World Wide, and Web Consortium. 1998. Resource

Description Framework (RDF) Model and Syntax Specification.
[13] Catherine C. Marshall, Frank M. Shipman III, and James C. Coombs. 1994. VIKI:

Spatial Hypertext Supporting Emergent Structure. In Proceedings of the 1994 ACM
European Conference on Hypermedia Technology ECHT 1994. ACM Press, 13–23.
https://doi.org/10.1145/192757.192759

[14] Peter A. Mawhorter, M. Mateas, NoahWardrip-Fruin, and A. Jhala. 2014. Towards
a theory of choice poetics. In FDG.

[15] Marjan Mernik, Jan Heering, and Anthony M. Sloane. 2005. When and How to
Develop Domain-Specific Languages. Comput. Surveys 37, 4 (Dec. 2005), 316–344.
https://doi.org/10.1145/1118890.1118892

[16] David E. Millard. 2022. Strange Patterns: Structure and Post-Structure in In-
teractive Digital Narratives. In The Authoring Problem (in press), Alex Mitchell
Ulrike Spierling Charlie Hargood, David E. Millard (Ed.). Springer-Verlag.

[17] David E. Millard, Charlie Hargood, Yvonne Howard, and Heather Packer. 2017.
The StoryPlaces Authoring Tool: Pattern Centric Authoring. In 10th International
Conference on Interactive Digital Storytelling (14/11/17 - 17/11/17).

[18] David E. Millard, Charlie Hargood, Michael O. Jewell, and Mark J. Weal. 2013.
Canyons, deltas and plains: towards a unified sculptural model of location-based
hypertext. In Proceedings of the 24th ACM Conference on Hypertext and Social
Media (HT ’13). Association for Computing Machinery, New York, NY, USA,
109–118. https://doi.org/10.1145/2481492.2481504

[19] Thomas Schedel and Claus Atzenbeck. 2016. Spatio-Temporal Parsing in Spatial
Hypermedia. In Proceedings of the 27th ACM Conference on Hypertext and Social
Media (HT ’16). Association for Computing Machinery, New York, NY, USA,
149–157. https://doi.org/10.1145/2914586.2914596

[20] Callum Spawforth, Nicholas Gibbins, and David Millard. 2018. Uncommon
Patterns - Authoring with Story Specific Structures. In Authoring for Interactive
Storytelling Workshop - ICIDS 2018.

[21] J. R. Ullmann. 1976. An Algorithm for Subgraph Isomorphism. J. ACM 23, 1 (Jan.
1976), 31–42. https://doi.org/10.1145/321921.321925

https://doi.org/10.1109/ACCESS.2021.3073494
https://heterogenoustasks.wordpress.com/2015/01/26/standard-patterns-in-choice-based-games/
https://heterogenoustasks.wordpress.com/2015/01/26/standard-patterns-in-choice-based-games/
https://doi.org/10.1145/2914586.2914624
https://doi.org/10.1145/3372923.3404798
https://doi.org/10.1007/978-3-030-04028-4_14
https://doi.org/10.1145/192757.192759
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1145/2481492.2481504
https://doi.org/10.1145/2914586.2914596
https://doi.org/10.1145/321921.321925

	Abstract
	1 Introduction
	2 Background
	3 Authoring with Patterns
	3.1 Cookbooks
	3.2 Patterns by Design
	3.3 Templates
	3.4 Domain Specific Languages
	3.5 Structural Parsers

	4 Discussion
	4.1 User/Tool Alignment and Cognitive Load
	4.2 Combining Approaches

	5 Conclusion
	Acknowledgments
	References

